Mobile Contextual Advertising

نویسندگان

  • Klaas Kox
  • HAIT Master
چکیده

....................................................................................................................................3! 1! Introduction .......................................................................................................................3! 1.1! Mobile Marketing.......................................................................................................3! 1.2! Recommender systems..............................................................................................4! 1.3! Research Question......................................................................................................4! 2! Mobile Advertising ...........................................................................................................5! 2.1! Mobile Marketing.......................................................................................................5! 2.2! Spam.............................................................................................................................6! 2.3! Personalisation............................................................................................................6! 2.4! SMS Marketing ...........................................................................................................7! 3! Machine Learning .............................................................................................................8! 3.1! Intelligent Machines ..................................................................................................8! 3.2! Knowledge Based or Machine Learning? ...............................................................9! 3.3! Matching Advertisements with their Context .....................................................10! 3.4! Machine-learning-based Recommendation .........................................................10! 4! Experimental setup .........................................................................................................11! 4.1.1! iThumb................................................................................................................11! 4.2! Pilot experiment .......................................................................................................12! 4.3! Main experiment ......................................................................................................12! 4.4! Data collection ..........................................................................................................13! 4.5! Statistics .....................................................................................................................14! 4.6! Measures....................................................................................................................14! 4.6.1! Precision and Recall ..........................................................................................14! 4.6.2! ROC Curve .........................................................................................................15! 4.7! Machine learning algorithms .................................................................................16! 4.7.1! Rule Induction ...................................................................................................16! 4.7.2! Decision Tree .....................................................................................................17! 4.7.3! K-nearest neighbor algorithm .........................................................................17! 4.7.4! Support Vector Machines.................................................................................17! 4.8! Feature Selection ......................................................................................................18! 4.9! Data coding ...............................................................................................................18! 5! Results...............................................................................................................................18!

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activity-based Advertising: Techniques and Challenges

Although information technology has transformed advertising dramatically in the past few years, the greatest changes may lie in the future. Researchers in Pervasive and Ubiquitous Computing have spent the last few years prototyping and studying context-aware systems. These systems use sensors on mobile phones and in the infrastructure to build digital models of the world. This technology has no...

متن کامل

A perceptual measure of mobile advertising using fuzzy linguistic preference relation

The purpose of this study has been concretized in terms of impact of mobileadvertising on the purchase decision of the consumer and aimed to answer toresearch questions: which is the underlying structure of criteria in mobileadvertising? And which criteria are important for consumers in evaluatingmobile advertising? A sample of consumers in Taiwan was surveyed and usingfuzzy judgment to determi...

متن کامل

Mobile Advertising Using Customer Movement Patterns

Rapid improvements in the precision of mobile technologies make it possible for advertisers to go beyond using the real-time static location and contextual information about consumers. In this study, we propose a new mobile advertising strategy that leverages full information on consumers’ offline movement trajectories from different mobility dimensions. To analyze the effectiveness of this new...

متن کامل

Trajectory-based Mobile Advertising

Rapid improvements in the precision of mobile technologies make it possible for advertisers to go beyond using the real-time static location and contextual information about consumers. In this study, we propose a new mobile advertising strategy that leverages full information on consumers’ offline movement trajectories from different mobility dimensions. To analyze the effectiveness of this new...

متن کامل

Context-Aware Advertising in Wireless Ad-Hoc Networks

There has been much recent research into the area of pervasive computing and the development of collaborative applications. Increased levels of mobility in computing devices combined with the ability to dynamically create mobile ad-hoc networks offers great potential for the development of ’smart’ applications. Application nodes can spontaneously interact and communicate with each other without...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008